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Introduction 6 

As part of the locus selection process proposed for chum salmon in WASSIP, we propose 7 

using fORCA (Rosenberg et al. 2003; Rosenberg 2005) with backward elimination as one of 8 

the marker selection methods for choosing SNPs for the chum salmon baseline (Tech 9 

Doc 8).  Results from this analysis are proposed to provide 30% of the locus-selection 10 

weight, the most of any analysis.   The information measure, fORCA, returns the Optimal 11 

Rate of Correct Assignment (ORCA) for a particular locus set with respect to a specific 12 

baseline.  At each iteration of the routine, a randomly drawn individual is assigned to a 13 

population for which its genotypic probability is a maximum.   We propose adapting 14 

fORCA to allow us to determine the best set of loci to provide separation among reporting 15 

groups taking advantage of potential synergy among loci.  To do this we propose 16 

implementing a backward elimination algorithm similar to that described in BELS 17 

(Bromaghin 2008).  However, we opted not to use the program BELS because it is too 18 

time-consuming.  Even though the Gene Conservation Laboratory does proportional 19 

allocation (as does BELS) rather than individual assignment (as does fORCA), we feel that 20 

fORCA with backward elimination has merit under a Bayesian mixed stock analysis routine 21 

because it attempts to select a suite of markers that optimizes the genotypic probabilities 22 

of potential mixture individuals, and BAYES (Pella and Masuda 2001) uses these 23 

probabilities to stochastically assign the mixture individuals each iteration.       24 

Current fORCA Algorithm 25 

While a closed form solution of fORCA is available (Rosenberg et al. 2003), it becomes 26 

impractical for large locus sets.  Therefore, Rosenberg (2005) provided an iterative 27 

algorithm for estimating fORCA.  This algorithm can be explained as follows.   28 

1. Uniformly draw a population at random from the baseline.   29 

2. Randomly generate a multi-locus genotype based on the allele frequencies of the 30 

population chosen in the first step.   31 

                                                 
1
 This document serves as a record of communication between the Alaska Department of Fish and Game 

Commercial Fisheries Division and the Western Alaska Salmon Stock Identification Program Technical 

Committee.  As such, these documents serve diverse ad hoc information purposes and may contain basic, 

uninterpreted data.  The contents of this document have not been subjected to review and should not be 

cited or distributed without the permission of the authors or the Commercial Fisheries Division. 
 



Page 2 of 6 

 

3. Assign that genotype to the population for which its genotypic probability is a 32 

maximum.   33 

4. Repeat Steps 1-3 10,000 times. 34 

5. After repeating this process multiple times, fORCA is calculated as the proportion of 35 

times that the assignment in Step 3 is the same population drawn in Step 1.   36 

While fORCA is typically used to evaluate how well a marker set can assign individuals 37 

back to the correct population, it could also be adapted for evaluating how well a marker 38 

set can be used to assign individuals back to the correct region.  With this application the 39 

algorithm would be as follows. 40 

1. Uniformly draw a population at random from the baseline.   41 

2. Determine the region to which the population belongs. 42 

3. Randomly generate a multi-locus genotype based on the allele frequencies of the 43 

population chosen in the first step.   44 

4. Assign that genotype to the population for which its genotypic probability is a 45 

maximum.   46 

5. Determine the region to which the assignment population belongs. 47 

6. Repeat Steps 1-5 10,000 times. 48 

7. After repeating this process multiple times, fORCA is calculated as the proportion of 49 

times that the assignment in Step 5 is the same region drawn in Step 2.   50 

 51 

Backward Elimination Locus Selection Algorithm 52 

Rosenberg’s fORCA algorithm  provides a means of evaluating the performance of a locus 53 

set, but it does not provide us with an algorithm for selecting sets of markers to evaluate.  54 

Rosenberg (2005) does provide four such algorithms and discusses the advantages and 55 

limitations of each: 1) Exhaustive evaluation, 2) Univariate accumulation, 3) Greedy 56 

accumulation, and 4) Maxmin accumulation. 57 

One locus selection algorithm that Rosenberg failed to discuss is the method used in the 58 

Backward Elimination Locus Selection (BELS) algorithm laid-out by Bromaghin (2008).  59 

This algorithm has the advantages of being both simple to implement and it exploits 60 

synergies among loci.  However, Bromaghin (2008) does not use fORCA to evaluate marker 61 

sets; rather he uses actual maximum likelihood mixed stock analysis and bootstrap 62 

simulations to evaluate performance in the software BELS.  While we agree that this is a 63 

relevant measure, unlike fORCA, it suffers from being prohibitively slow and may be biased 64 

in some circumstances (Anderson 2008). 65 

We suggest that marker selection applications with large numbers of populations and loci 66 

should employ the BELS algorithm for selecting marker panels to evaluate, but use the 67 

fORCA function to do the evaluation.  For the purposes of WASSIP, we will use the correct 68 

assignment to region algorithm described above. 69 

This would be accomplished by the following:   70 
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1. Start with entire set of L potential markers. 71 

2. Create L sub-sets of L-1 markers by removing each marker, in turn, from full the 72 

set. 73 

3. Evaluate fORCA on all L sub-sets using correct assignment to region. 74 

4. Identify sub-set with maximum fORCA.   75 

5. Record which locus was removed. 76 

6. Return to Step 1 using the sub-set identified in Step 4 as the new full set of L-1 77 

loci. 78 

This process is continued until no markers remain.  The loci can be ranked according to 79 

the order in which they were removed or scored according to their fORCA value. 80 

This algorithm has been implemented in R for use with the chum salmon SNP selection 81 

process described in Technical Document 8, ―Chum salmon SNP selection process 82 

outline.‖ 83 

The limitations of fORCA are: 1) it (likely) suffers from providing an optimistic rate of 84 

correct assignment, and; 2) spurious differences in allele frequencies can lead to falsely 85 

identifying some loci as influential.  An extension of fORCA that may alleviate its 86 

limitations would be to implement a ―leave-one-out‖ approach by which we randomly 87 

draw an individual from the ascertainment baseline, recalculate the allele frequencies 88 

without that individual, then assign the individual based on the recalculated allele 89 

frequencies.  While more difficult to implement, this version may be a more viable 90 

solution.  We are currently working on programming this extension. 91 

 92 
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 Technical Committee review and comments 106 

 107 

General comments:  In general the approach seems reasonable, but we have some specific 108 

comments as detailed below. 109 

 110 

Minor comments: 111 

Line 13: ―At each iteration of the routine, a randomly drawn individual is 112 

assigned to a population for which its genotypic probability is a maximum.‖  How is this 113 

individual chosen?  What is the pool of candidate individuals? 114 

Line 29: ―Uniformly draw a population at random from the baseline.‖ What 115 

exactly does this mean?  Each population has equal weight, and then the draw is random? 116 

Line 63: ―While we agree that this is a relevant measure, unlike fORCA, it suffers 117 

from being prohibitively slow and may be biased in some circumstances (Anderson 118 

2008).‖  After ―unlike fORCA”, two attributes are listed but only one (being slow) is 119 

unlike fORCA.  The bias described by Anderson et al. (2008) is equally applicable to 120 

fORCA.  See below for more on this point. 121 

 122 

Responses to specific questions: 123 

 124 

1. Is our approach to linkage disequilibrium and HWE reasonable?  125 

 For the most part, but we have several comments to consider. 126 

1) For both types of analyses, it is important to ensure that the baseline 127 

populations represent single panmictic populations.  If not, a Wahlund effect 128 

could cause both HW and LD departures that appear to be data quality issues 129 

but actually reflect population mixture. 130 

2) For both types of analyses, be careful about only using results of tests of 131 

statistical significance.  You are really interested in the magnitude of the 132 

effect size here, but P values also depend heavily on sample sizes.  Also, the 133 

direction of departure (e.g., heterozygotes excess or deficiency) can be 134 

informative about potential causes. 135 

3) The LD analyses will consider pairs of loci, of which there are n(n-1)/2 136 

possible comparisons for n loci.  Since n could be 200 or more, this represents 137 

a huge number of pairwise comparisons, each of which could be conducted 138 

for many different populations.  Using the Bonferroni correction here would 139 

require consideration of tiny P values, which could lead to unpredictable 140 

results.  It is probably more useful to screen for pairs of loci that are 141 

consistently out of equilibrium (using the nominal alpha level) in multiple 142 

populations.  Some consideration of effect size (the magnitude of LD) would 143 

also be useful in evaluating how serious a problem any deviations are likely to 144 

cause. 145 

 146 

2. Is our method to determine the relative value of different treatments of linked markers 147 

advisable? Is the use of fORCA as a measure appropriate?  148 

 The general procedure described at lines 56-68 of Document 8 seems reasonable, 149 

as does the logic for using a procedure that assigns entire individuals rather than making 150 
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fractional assignments.  With the caveats noted below, fORCA should be ok as a means to 151 

assess relative power for correct assignment. 152 

 153 

3. Are the tests appropriately structured to provide a set of SNPs that will perform well 154 

for WASSIP?  155 

 The proposed methods should produce a set of SNPs with high power to resolve 156 

stock identification problems in Western Alaska. 157 

 158 

4. Does the weighting applied to each set of tests seem reasonable?  159 

 The weights chosen are obviously somewhat arbitrary but do not appear to be 160 

unreasonable.  Because of the applied focus of this project, it is appropriate to assign 161 

greater weight to markers that have high power for the local areas of interest.  However, 162 

we were pleased to see that the criteria include non-trivial weight to markers with wider 163 

geographic relevance (10% weight for Pacific Rim individual populations, plus 6% for 164 

major non-Alaska groups).  This will help ensure that the considerable efforts here to 165 

develop markers will have much broader application to the scientific and fishery 166 

management communities. 167 

 168 

Minor comments:   169 

In the proposed PCA analysis for Pacific-wide assessments, part (iii) is partially 170 

redundant as it will include information already used for (i) and (ii) 171 

 Outside Alaska:  we don’t necessarily disagree with the particular comparisons 172 

proposed, but the rationale for choosing them is not given. 173 

 174 

5. Are there other measures that would be more appropriate?  175 

Can’t think of any offhand. 176 

 177 

General comments about bias and fORCA 178 

 It is important to distinguish between two different types of biases that can 179 

potentially arise in evaluations such as those proposed here. 180 

 The first type of bias, described by Anderson et al. (2008), occurs when one is 181 

interested in assessing the power of a particular set of markers to resolve the composition 182 

of a mixture comprised of individuals from a specified group of source populations.  The 183 

ideal way to do this is to create simulated mixtures of individuals, with the genotype of 184 

each individual being chosen based on actual allele frequencies in one of the (randomly 185 

chosen) source populations.  The bias arises because we never know the actual allele 186 

frequencies—we only have samples.  Because of random sampling error, allele 187 

frequencies in samples from the baseline populations will on average be more divergent 188 

than are the true population allele frequencies.  On average, this factor inflates Fst among 189 

baseline samples by the magnitude 1/(2S), where S is the baseline sample size.  When 190 

simulated mixtures are constructed using these baseline allele frequencies (which appear 191 

more different than the populations actually are), the population assignments will tend to 192 

be overly optimistic.  Furthermore, the relative importance of sampling error (and hence 193 

the bias) will be larger when true genetic differences among populations are very small—194 

as occurs with Western Alaska chum salmon.   Anderson et al. (2008) described a simple 195 
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leave-one-out procedure that eliminates the bias, but the routine described at lines 41-50 196 

of Document 10 would be subject to this type of bias. 197 

 The second type of bias, described by Anderson (2010), applies to locus-selection 198 

programs.  The bias is not in the locus selection per se, but rather in the evaluation of 199 

power of the resulting set of loci for population assignment.  Anderson (2010) showed 200 

that the bias arises because none of the commonly-used software programs for locus 201 

selection (including BELS) use proper cross validation.   Instead, some of the information 202 

used to select the panel of loci is also used to evaluate its performance, and this leads to 203 

an overly optimistic assessment of assignment power.  We did not see any indication that 204 

the combined fORCA-BELS approach proposed in Document 10 would not be subject to 205 

this type of bias.  Also, although the authors list 4 methods Rosenberg (2005) evaluated 206 

for selecting subsets of loci, they don’t explain why they did not consider any of them for 207 

the current project.   208 

 One reason that proper cross-validation is often not done is that it is costly in 209 

terms of information content.  The ―gold standard‖ of cross validation is to split the data 210 

in half:  the first half is used to develop the algorithm, the second half to evaluate its 211 

performance.  However, doing this means that the algorithm is likely to be less precise 212 

because it is based on less data.  Researchers are thus typically faced with a trade-off 213 

between precision in developing the best algorithm (use all the data in the first step) and 214 

the downstream consequences (subsequent assessments of performance using the same 215 

data will tend to be overly optimistic).  Anderson (2010) suggested a simple modification 216 

to the cross-validation procedure that retains most of the information without leading to 217 

appreciable bias in assessing performance. 218 

 In summary, both types of biases can lead to overly optimistic assessments of 219 

power, which should be a concern given the stated goals of the project.   For applications 220 

that only consider relative power, these biases might not be important.  Also, it might be 221 

the case that the proposed locus-selection approach is perfectly fine for selecting an 222 

optimal panel of loci, but that the estimates of power to be expected when that panel is 223 

applied to real data are biased upwards. 224 

Text at lines 84-91 of Document 10 seems to acknowledge at least the bias 225 

problem identified by Anderson et al. (2008), but it is not clear that both of the potential 226 

sources of bias described above have been fully considered in the documents we 227 

reviewed.  This topic merits closer scrutiny to determine the optimal way to proceed 228 

given project goals. 229 

 230 
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